Paper Reading (EOS)

This website is a backup of group meeting information of EOS Observational Seismology group. Some available PPTs are in MIG Google Drive (groupmeeting.NTU/groupmeeting.EOS) or in EOS-Seismology Microsoft Teams (Files/PaperReading).

2021

Correlation of porosity variations and rheological transitions on the southern Cascadia megathrust

  • 2021-07-16 by Yukuan Chen

  • Guo, H., McGuire, J. J., & Zhang, H. (2021). Correlation of porosity variations and rheological transitions on the southern Cascadia megathrust. Nature Geoscience, 14(5), 341–348. https://doi.org/10.1038/s41561-021-00740-1

Structure and QP–QS Relations in the Seattle and Tualatin Basins from Converted Seismic Phases

  • 2021-07-09 by Win Shwee Sin Oo

  • Stone, I., Wirth, E. A., & Frankel, A. D. (2021). Structure and QP–QS Relations in the Seattle and Tualatin Basins from Converted Seismic Phases. Bulletin of the Seismological Society of America, 111(3), 1221–1233. https://doi.org/10.1785/0120200390

Rapid Acceleration Leads to Rapid Weakening in Earthquake-Like Laboratory Experiments

  • 2021-07-02 by Hongyu Zeng

  • Chang, J. C., Lockner, D. A., & Reches, Z. (2012). Rapid Acceleration Leads to Rapid Weakening in Earthquake-Like Laboratory Experiments. Science, 338(6103), 101–105. https://doi.org/10.1126/science.1221195

Misconception of Waveform Similarity in the Identification of Repeating Earthquakes

  • 2021-06-25 by Karen Lythgoe

  • Gao, D., Kao, H., & Wang, B. (2021). Misconception of Waveform Similarity in the Identification of Repeating Earthquakes. Geophysical Research Letters. Published. https://doi.org/10.1029/2021gl092815

Data-driven Accelerogram Synthesis using Deep Generative Models

  • 2021-06-18 by Qibin Shi

  • Florez, M., Caporale, M., Buabthong, P., Ross, Z., Asimaki, D., & Meier, M. (2020). Data-driven Accelerogram Synthesis using Deep Generative Models. https://arxiv.org/abs/2011.09038

Elastic Properties of Minerals

  • 2021-06-04 by Shidong

  • Bass, J. D., Sinogeikin, S. V., & Li, B. (2008). Elastic Properties of Minerals: A Key for Understanding the Composition and Temperature of Earth’s Interior. Elements, 4(3), 165–170. https://doi.org/10.2113/gselements.4.3.165

New Ground Motion to Intensity Conversion Equations (GMICEs) for New Zealand

  • 2021-05-28 by Phyo Maung Maung

  • Moratalla, J. M., Goded, T., Rhoades, D. A., Canessa, S., & Gerstenberger, M. C. (2020). New Ground Motion to Intensity Conversion Equations (GMICEs) for New Zealand. Seismological Research Letters, 92(1), 448–459.

The Hindu Kush slab break-off as revealed by deep structure and crustal deformation

  • 2021-05-21 by Priyamvada Nanjundiah

  • Kufner, S. K., Kakar, N., Bezada, M., Bloch, W., Metzger, S., Yuan, X., … & Schurr, B. (2021). The Hindu Kush slab break-off as revealed by deep structure and crustal deformation. Nature communications, 12(1), 1-11.

Subducted oceanic crust and the origin of lower-mantle heterogeneities

  • 2021-05-14 by Weiwen Chen

  • Wang, W., Xu, Y., Sun, D., Ni, S., Wentzcovitch, R., & Wu, Z. (2020). Velocity and density characteristics of subducted oceanic crust and the origin of lower-mantle heterogeneities. Nature communications, 11(1), 1-8.

3D fault architecture controls the dynamism of earthquake swarms

  • 2021-05-07 by Yukuan Chen

  • Ross, Z. E., Cochran, E. S., Trugman, D. T., & Smith, J. D. (2020). 3D fault architecture controls the dynamism of earthquake swarms. Science, 368(6497), 1357-1361.

Fault damage zones

Earthquakes, geology, tectonics and rheology

  • 2021-04-16 by Shengji Wei

  • Jackson, J., McKenzie, D., & Priestley, K. (2021). Relations between earthquake distributions, geological history, tectonics and rheology on the continents. Philosophical Transactions of the Royal Society A, 379(2193), 20190412.

Propagation of large earthquakes as self-healing pulses or mild cracks

  • 2021-04-09 by Hongyu Zeng

  • Lambert, V., Lapusta, N., & Perry, S. (2021). Propagation of large earthquakes as self-healing pulses or mild cracks. Nature, 591(7849), 252-258. https://doi.org/10.1038/s41586-021-03248-1

Seamount Subduction and Earthquakes

Seismotectonics of the eastern Himalayan and indo‐burman plate boundary systems

  • 2021/03/12 by Wardah Shafiqah Binti MOHAMMAD FADIL

  • Kumar, A., Mitra, S., & Suresh, G. (2015). Seismotectonics of the eastern Himalayan and indo-burman plate boundary systems. Tectonics, 34(11), 2279–2295. https://doi.org/10.1002/2015tc003979

Near‐Field Ground Motions and Shaking from Ridgecrest Earthquake

  • 2021/03/05 by Phyo Maung Maung

  • Hough, S. E., Yun, S. H., Jung, J., Thompson, E., Parker, G. A., & Stephenson, O. (2020). Near‐Field Ground Motions and Shaking from the 2019 Mw 7.1 Ridgecrest, California, Mainshock: Insights from Instrumental, Macroseismic Intensity, and Remote‐Sensing Data. Bulletin of the Seismological Society of America, 110(4), 1506-1516.

Localized fault-zone dilatancy and surface inelasticity of the 2019 Ridgecrest earthquakes

  • 2021/02/26 by Priyamvada Nanjundiah

  • Barnhart, W. D., Gold, R. D., & Hollingsworth, J. (2020). Localized fault-zone dilatancy and surface inelasticity of the 2019 Ridgecrest earthquakes. Nature Geoscience, 13(10), 699-704.

Earth’s deepest earthquake swarms track fluid ascent beneath nascent arc volcanoes

Deep Learning for Picking Seismic Arrival Times

  • 2021/02/05 by Yukuan Chen

  • Wang, J., Xiao, Z., Liu, C., Zhao, D., & Yao, Z. Deep Learning for Picking Seismic Arrival Times. Journal of Geophysical Research: Solid Earth, 2019, 124(7), 6612–6624. https://doi.org/10.1029/2019jb017536

Laboratory Earthquakes: The Sub-Rayleigh–to–Supershear Rupture Transition

  • 2021/01/29 by Deepa

  • Xia K W, Ares J R, Hiroo K, et al. Laboratory Earthquakes: The Sub-Rayleigh–to–Supershear Rupture Transition. American Association for the Advancement of Science, 2004, 303(5665): 1859-1861. https://doi.org/10.1126/science.1094022

Basement Imaging Using Sp Converted Phases from a Dense Strong-Motion Array in Lan-Yang Plain, Taiwan

  • 2021/01/22 by Win Shwe Sin Oo

  • Chang C H, Lin T L, Wu Y M, et al. Basement imaging using Sp converted phases from a dense strong-motion array in Lan-Yang Plain, Taiwan[J]. Bulletin of the Seismological Society of America, 2010, 100(3): 1363-1369.

Deep structure of NE China

  • 2021/01/15 by Weiwen Chen

  • Wang, X., Chen, Q. F., Niu, F., Wei, S., Ning, J., Li, J., … & Liu, L. (2020). Distinct slab interfaces imaged within the mantle transition zone. Nature Geoscience, 13(12), 822-827.

  • Tang, Y., Obayashi, M., Niu, F., Grand, S. P., Chen, Y. J., Kawakatsu, H., … & Ni, J. F. (2014). Changbaishan volcanism in northeast China linked to subduction-induced mantle upwelling. Nature Geoscience, 7(6), 470-475.

  • Ma, J., Tian, Y., Liu, C., Zhao, D., Feng, X., & Zhu, H. (2018). P-wave tomography of Northeast Asia: Constraints on the western Pacific plate subduction and mantle dynamics. Physics of the Earth and Planetary Interiors, 274, 105-126.

Fault healing promotes high-frequency earthquakes in laboratory experiments and on natural faults

  • 2021/01/08 by Hongyu Zeng

  • McLaskey, G., Thomas, A., Glaser, S. et al. Fault healing promotes high-frequency earthquakes in laboratory experiments and on natural faults. Nature 491, 101–104 (2012). https://doi.org/10.1038/nature11512

2020

Shumagin seismic gap at the Alaska subduction zone

  • 2020/12/4 by Qibin Shi

  • Shillington D J, Bécel A, Nedimović M R, et al. Link between plate fabric, hydration and subduction zone seismicity in Alaska[J]. Nature Geoscience, 2015, 8(12): 961-964.

Continuum of earthquake rupture speeds enabled by oblique slip

  • 2020/11/27 by Rishav

  • Weng, H. and Ampuero, J.P., 2020. Continuum of earthquake rupture speeds enabled by oblique slip. Nature Geoscience, pp.1-5.

Evolution of tectonics and geodynamics of the eastern part of the India-Asia collision in Myanmar

  • 2020/11/20 by Wardah Shafiqah Binti MOHAMMAD FADIL

  • Licht A, Dupont-Nivet G, Win Z, et al. Paleogene evolution of the Burmese forearc basin and implications for the history of India-Asia convergence[J]. GSA Bulletin, 2019, 131(5-6): 730-748.

Seismoetctonics of Hindu-Kush and Pamir regions

  • 2020/11/06 by Phyo Maung Maung

  • Schurr,B.,L.Ratschbacher,C.Sippl,R. Gloaguen, X. Yuan, and J. Mechie (2014), Seismotectonics of the Pamir , Tectonics, 33, 1501–1 518, doi:10.1002/2014TC003576.

Pamir‐Hindu Kush Intermediate‐depth Earthquake

  • 2020/10/30 by Priyamvada Nanjundiah

  • Sippl, C., Schurr, B., Yuan, X., Mechie, J., Schneider, F. M., Gadoev, M., … & Minaev, V. (2013). Geometry of the Pamir‐Hindu Kush intermediate‐depth earthquake zone from local seismic data. Journal of Geophysical Research: Solid Earth, 118(4), 1438-1457.

The crust in the Pamir

  • 2020/10/23 by Priyamvada Nanjundiah

  • Schneider, F. M., Yuan, X., Schurr, B., Mechie, J., Sippl, C., Kufner, S. K., … & Minaev, V. (2019). The crust in the Pamir: Insights from receiver functions. Journal of Geophysical Research: Solid Earth, 124(8), 9313-9331.

Serpentinites

  • 2020/10/16 by Karen Lythgoe

  • Guillot, S., Schwartz, S., Reynard, B., Agard, P., & Prigent, C. (2015). Tectonic significance of serpentinites. Tectonophysics, 646, 1-19.

Lower-mantle anisotropy

  • 2020/10/09 by Weiwen Chen

  • Ferreira, A. M., Faccenda, M., Sturgeon, W., Chang, S. J., & Schardong, L. (2019). Ubiquitous lower-mantle anisotropy beneath subduction zones. Nature Geoscience, 12(4), 301-306.

Solving the Eikonal Equation with Deep Neural Networks

  • 2020/10/02 by Yukuan Chen

  • EikoNet: Solving the Eikonal equation with Deep Neural Networks. PDF

Earthquake ruptures with thermal weakening and the operation of major faults

  • 2020/09/25 by Deepa

  • Noda, H., Dunham, E. M., & Rice, J. R. (2009). Earthquake ruptures with thermal weakening and the operation of major faults at low overall stress levels. Journal of Geophysical Research: Solid Earth, 114(B7).

Earthquake detection and phase picking by deep learning

  • 2020/09/18 by Win Shwe Sin OO

  • Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., & Beroza, G. C. (2020). Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nature communications, 11(1), 1-12.

Physics of dynamic friction

  • 2020/09/11 by Hongyu Zeng

  • Tal, Y., Rubino, V., Rosakis, A. J., & Lapusta, N. (2020). Illuminating the physics of dynamic friction through laboratory earthquakes on thrust faults. Proceedings of the National Academy of Sciences, 117(35), 21095-21100.

Machine learning

  • 2020/09/04 by Qibin Shi

  • Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., … & Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems (pp. 2672-2680).

  • Li, Z., Meier, M. A., Hauksson, E., Zhan, Z., & Andrews, J. (2018). Machine learning seismic wave discrimination: Application to earthquake early warning. Geophysical Research Letters, 45(10), 4773-4779.

Focal depth determination

  • 2020/08/28 by Wardah Shafiqah Binti MOHAMMAD FADIL

  • Yuan, J., Kao, H., & Yu, J. (2020). Depth‐Scanning Algorithm: Accurate, Automatic, and Efficient Determination of Focal Depths for Local and Regional Earthquakes. Journal of Geophysical Research: Solid Earth, 125(7)

Machine learning in seismology

  • 20202/08/21 by Phyo Maung Maung

  • Kong, Q., Trugman, D. T., Ross, Z. E., Bianco, M. J., Meade, B. J., & Gerstoft, P. (2019). Machine learning in seismology: Turning data into insights. Seismological Research Letters, 90(1), 3-14.

High-resolution seismic catalog

  • 2020/08/14 by Priyamvada Nanjundiah

  • Shelly, D. R. (2020). A high‐resolution seismic catalog for the initial 2019 Ridgecrest earthquake sequence: Foreshocks, aftershocks, and faulting complexity. Seismological Research Letters.

Sequencing seismograms

  • 2020/08/07 by Karen Lythgoe

  • Kim, D., Lekić, V., Ménard, B., Baron, D., & Taghizadeh-Popp, M. (2020). Sequencing seismograms: A panoptic view of scattering in the core-mantle boundary region. Science, 368(6496), 1223-1228.

Spectral element method

  • 2020/07/24 by Shengji Wei

  • Komatitsch, Dimitri, and Jeroen Tromp. “Introduction to the spectral element method for three-dimensional seismic wave propagation.” Geophysical journal international 139.3 (1999): 806-822.

410‐km discontinuity

  • 2020/07/17 by Weiwen Chen

  • Li, L., Chen, Y.‐W., Zheng, Y., Hu, H., & Wu, J. (2019). Seismic evidence for plume‐slab interaction by high‐resolution imaging of the 410‐km discontinuity under Tonga. Geophysical Research Letters, 46, 13687– 13694.

Induced seismicity

  • 2020/07/03 by Deepa

  • Scuderi, M. M., & Collettini, C. (2016). The role of fluid pressure in induced vs. triggered seismicity: Insights from rock deformation experiments on carbonates. Scientific reports, 6(1), 1-9.

Double-difference location

  • 2020/06/26 by Win Shwe Sin OO

  • Bouchaala, F., Vavryčuk, V., & Fischer, T. (2013). Accuracy of the master-event and double-difference locations: synthetic tests and application to seismicity in West Bohemia, Czech Republic. Journal of seismology, 17(3), 841-859.

Waveform‐based seismic location

  • 2020/06/19/ by Hongyu Zeng

  • Li, L., Tan, J., Schwarz, B., Staněk, F., Poiata, N., Shi, P., et al. ( 2020). Recent advances and challenges of waveform‐based seismic location methods at multiple scales. Reviews of Geophysics, 58, e2019RG000667.

Fault reactivation

  • 2020/06/12 by Qibin Shi

  • Giorgetti, C., Tesei, T., Scuderi, M. M., & Collettini, C. ( 2019). Experimental insights into fault reactivation in gouge‐filled fault zones. Journal of Geophysical Research: Solid Earth, 124, 4189– 4204.

Seismic ocean thermometry

  • 2020/06/05 by Sheng Wei

  • Wenbo Wu’s research about temporal change of ocean temperature measured by temporal change of T-phase between repeating earthquakes

Indian continental subduction beneath Myanmar

  • 2020/05/29 by Wardah FADIL

  • Zheng, T., He, Y., Ding, L., Jiang, M., Ai, Y., Mon, C. T., … & Thant, M. (2020). Direct structural evidence of Indian continental subduction beneath Myanmar. Nature Communications, 11(1), 1-9.

Major Active Faults in Central Myanmar

  • 2020/05/22 by Phyo Maung Maung

  • Mon, C. T., Gong, X., Wen, Y., Jiang, M., Chen, Q.‐F., Zhang, M., et al. ( 2020). Insight into major active faults in Central Myanmar and the related geodynamic sources. Geophysical Research Letters, 47.

Aftershocks driven by afterslip and fluid pressure sweeping

  • 2020/05/15 by Priyamvada Nanjundiah

  • Ross, Z. E., Rollins, C., Cochran, E. S., Hauksson, E., Avouac, J.‐P., and Ben‐Zion, Y. (2017), Aftershocks driven by afterslip and fluid pressure sweeping through a fault‐fracture mesh, Geophys. Res. Lett., 44, 8260–8267.

Fiber‐Optic Distributed Acoustic Sensing

  • 2020/05/01 by Karen Lythgoe

  • Zhu, T., & Stensrud, D. J. (2019). Characterizing Thunder‐Induced Ground Motions Using Fiber‐Optic Distributed Acoustic Sensing Array. Journal of Geophysical Research: Atmospheres, 124, 12,810–12,823.

Metastable olivine wedge

  • 2020/04/24 by Weiwen Chen

  • Shen, Z., & Zhan, Z. (2020). Metastable olivine wedge beneath the Japan Sea imaged by seismic interferometry. Geophysical Research Letters, 47(6).

Creep, compaction and the weak rheology of faults

  • 2020/04/17 by Deepa

  • Sleep, N. H., & Blanpied, M. L. (1992). Creep, compaction and the weak rheology of major faults. Nature, 359(6397), 687-692.

Double-difference location

  • 2020/04/10 by Win Shwe Sin OO

  • Waldhauser, F., & Ellsworth, W. L. (2000). A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California. BSSA.

Earthquake ground motion

  • 2020/04/03 by Hongyu Zeng

  • Tsai, V. C., & Hirth, G. (2020). Elastic impact consequences for high‐frequency earthquake ground motion. Geophysical Research Letters, e2019GL086302.

Stress inversion

  • 2020/03/27 by Wardah Shafiqah Binti MOHAMMAD FADIL

  • Michael, Andrew J. (1984). Determination of stress from slip data: Faults and Folds. JGR.

Nodes

  • 2020/03/20 by Phyo Maung Maung

  • Dean, T., Tulett, J., & Barnwell, R. (2018). Nodal land seismic acquisition: The next generation. First Break, 36(1), 47-52.

Mars seismology

  • 2020/03/13 by Shengji Wei

  • Giardini, Domenico, et al. (2020). The seismicity of Mars. Nature Geoscience, 1-8.

  • Lognonné, P., Banerdt, W. B., et al. (2020). Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nature Geoscience, 1-8.

Mantle transition zone water filter

  • 2020/03/06 by Karen Lythgoe

  • Bercovici, D., & Karato, S. I. (2003). Whole-mantle convection and the transition-zone water filter. Nature, 425(6953), 39-44.

  • Yang, J., & Faccenda, M. (2020). Intraplate volcanism originating from upwelling hydrous mantle transition zone. Nature, 1-4.

Earthquake nucleation

  • 2020/02/28 by Qibin Shi

  • Ohnaka, M. (1992). Earthquake source nucleation: a physical model for short-term precursors. Tectonophysics, 211(1-4), 149-178.

  • Meier, M. A., Heaton, T., & Clinton, J. (2016). Evidence for universal earthquake rupture initiation behavior. Geophysical Research Letters, 43(15), 7991-7996.

  • Olson, E. L., & Allen, R. M. (2005). The deterministic nature of earthquake rupture. Nature, 438(7065), 212-215.

  • Umeda, Y. (1990). High-amplitude seismic waves radiated from the bright spot of an earthquake. Tectonophysics, 175(1-3), 81-92.

  • Dieterich, J. H. (1992). Earthquake nucleation on faults with rate-and state-dependent strength. Tectonophysics, 211(1-4), 115-134.

Deep earthquake and deep mantle water recycle

  • 2020/02/21 by Weiwen Chen

  • Li, J., Zheng, Y., Thomsen, L., Lapen, T. J., & Fang, X. (2018). Deep earthquakes in subducting slabs hosted in highly anisotropic rock fabric. Nature Geoscience, 11(9), 696-700.

  • Nakagawa, T., & Nakakuki, T. (2019). Dynamics in the uppermost lower mantle: insights into the deep mantle water cycle based on the numerical modeling of subducted slabs and global-scale mantle dynamics. Annual Review of Earth and Planetary Sciences, 47, 41-66.

Earthquake Nucleation

  • 2020/01/03 by Hongyu Zeng

  • Bouchon, M., Karabulut, H., Aktar, M., Özalaybey, S., Schmittbuhl, J., & Bouin, M. P. (2011). Extended nucleation of the 1999 Mw 7.6 Izmit earthquake. science, 331(6019), 877-880.

2019

Low-velocity zone atop the 410

  • 2019/11/29 by Weiwen Chen

  • Song, T. R. A., Helmberger, D. V., & Grand, S. P. (2004). Low-velocity zone atop the 410-km seismic discontinuity in the northwestern United States. Nature, 427(6974), 530.

Thermal pressurization

  • 2019/11/22 by Shengji Wei

  • Viesca, R. C., & Garagash, D. I. (2015). Ubiquitous weakening of faults due to thermal pressurization. Nature Geoscience, 8(11), 875.

Similar scaling laws

  • 2019/11/15 by Qibin Shi

  • Michel, S., Gualandi, A., & Avouac, J. P. (2019). Similar scaling laws for earthquakes and Cascadia slow-slip events. Nature, 574(7779), 522-526.

Earthquake localization

  • 2019/11/08 by Boasby Aidan David

  • Heck, M., Hobiger, M., van Herwijnen, A., Schweizer, J., & Fäh, D. (2018). Localization of seismic events produced by avalanches using multiple signal classification. Geophysical Journal International, 216(1), 201-217.

Supershear earthquakes

  • 2019/11/01 by Hongyu Zeng

  • Bouchon, M., & Karabulut, H. (2008). The aftershock signature of supershear earthquakes. science, 320(5881), 1323-1325.

Real-time discrimination of earthquake foreshocks and aftershocks

  • 2019/10/25 by Wardah Shafiqah Binti MOHAMMAD FADIL

  • Gulia, L., & Wiemer, S. (2019). Real-time discrimination of earthquake foreshocks and aftershocks. Nature, 574(7777), 193-199.

Seismological detection of low‐velocity anomalies surrounding the mantle transition zone in Japan subduction zone

  • 2019/10/18 by Weiwen Chen

  • Liu, Z., Park, J., and Karato, S.‐i. ( 2016), Seismological detection of low‐velocity anomalies surrounding the mantle transition zone in Japan subduction zone, Geophys. Res. Lett., 43, 2480– 2487.

Geometry of the Burmese-Andaman subducting lithosphere

  • 2019/10/11 by Phyo Maung Maung

  • Dasgupta, S., Mukhopadhyay, M., Bhattacharya, A., & Jana, T. K. (2003). The geometry of the Burmese-Andaman subducting lithosphere. Journal of Seismology, 7(2), 155-174.

Subduction megathrust earthquakes

  • 2019/10/04 by Deepa Mele Veedu

  • Meier, M. A., Ampuero, J. P., & Heaton, T. H. (2017). The hidden simplicity of subduction megathrust earthquakes. Science, 357(6357), 1277-1281.

Temporal change

  • 2019/09/27 by Hongyu Zeng

  • Schaff, D. P., & Beroza, G. C. (2004). Coseismic and postseismic velocity changes measured by repeating earthquakes. Journal of Geophysical Research: Solid Earth, 109(B10).

Slip partitioning

  • 2019/09/20 by Shengji Wei

  • Bradley, K. E., Feng, L., Hill, E. M., Natawidjaja, D. H., & Sieh, K. (2017). Implications of the diffuse deformation of the Indian Ocean lithosphere for slip partitioning of oblique plate convergence in Sumatra. Journal of Geophysical Research: Solid Earth, 122(1), 572-591.

Dense seismic array

  • 2019/09/13 by Karen Lythgoe

  • Ben-Zion, Y., Vernon, F. L., Ozakin, Y., Zigone, D., Ross, Z. E., Meng, H., … & Barklage, M. (2015). Basic data features and results from a spatially dense seismic array on the San Jacinto fault zone. Geophysical Journal International, 202(1), 370-380.

Tremor

  • 2019/09/06 by Wardah Shafiqah Binti MOHAMMAD FADIL

  • Shelly, D. R. (2010). Migrating tremors illuminate complex deformation beneath the seismogenic San Andreas fault. Nature, 463(7281), 648.

Precursory changes in seismic velocity

  • 2019/08/30 by Deepa Mele Veedu

  • Scuderi, M. M., Marone, C., Tinti, E., Di Stefano, G., & Collettini, C. (2016). Precursory changes in seismic velocity for the spectrum of earthquake failure modes. Nature geoscience, 9(9), 695.

Seismic nucleation phase

  • 2019/08/23 by Qibin Shi

  • Beroza, G. C., & Ellsworth, W. L. (1996). Properties of the seismic nucleation phase. Tectonophysics, 261(1-3), 209-227.

Sumatran fault in Aceh

  • 2019/08/16

  • Seismicity

    • Hurukawa, N., Wulandari, B. R., & Kasahara, M. (2014). Earthquake history of the Sumatran fault, Indonesia, since 1892, derived from relocation of large earthquakes. Bulletin of the Seismological Society of America, 104(4), 1750-1762.

  • GPS

    • Ito, T., E. Gunawan, F. Kimata, T. Tabei, M. Simons, I. Meilano, Agustan, Y. Ohta, I. Nurdin, and D. Sugiyanto (2012), Isolating along-strike variations in the depth extent of shallow creep and fault locking on the northern Great Sumatran Fault, J. Geophys. Res., 117, B06409.

  • InSAR

    • Tong, X., Sandwell, D. T., & Schmidt, D. A. (2018). Surface creep rate and moment accumulation rate along the Aceh seg- ment of the Sumatran fault from L-band ALOS-1/PALSAR-1 observations. Geophysical Research Letters, 45, 3404–3412.

  • Magnetotelluric resistivity

    • Becken, M., Ritter, O., Bedrosian, P. A., & Weckmann, U. (2011). Correlation between deep fluids, tremor and creep along the central San Andreas fault. Nature, 480(7375), 87.

  • Repeating earthquake

    • Nadeau, R. M., & McEvilly, T. V. (1999). Fault slip rates at depth from recurrence intervals of repeating microearthquakes. Science, 285(5428), 718-721.

  • Fault damaged zone

    • Li, Y. G., Vidale, J. E., & Cochran, E. S. (2004). Low‐velocity damaged structure of the San Andreas Fault at Parkfield from fault zone trapped waves. Geophysical Research Letters, 31(12).

  • Slip coulping

    • Noda, H., & Lapusta, N. (2013). Stable creeping fault segments can become destructive as a result of dynamic weakening. Nature, 493(7433), 518.

Deep creep along the San Jacinto fault

  • 2019/08/05

  • Wdowinski, S. (2009). Deep creep as a cause for the excess seismicity along the San Jacinto fault. Nature Geoscience, 2(12), 882.

Slip Pulse

  • 2019/07/26 by Priyamvada Nanjundiah

  • Melgar, D., & Hayes, G. P. (2017). Systematic observations of the slip pulse properties of large earthquake ruptures. Geophysical Research Letters, 44(19), 9691-9698.

Lateral velocity variation in the deep Earth

  • 2019/07/19 by Weiwen Chen

  • Sun, D., Helmberger, D., Ni, S., & Bower, D. (2009). Direct measures of lateral velocity variation in the deep Earth. Journal of Geophysical Research: Solid Earth, 114(B5).

Earthquake rupture below the brittle-ductile transition

  • 2019/07/12 by Shengji Wei

  • Prieto, G. A., Froment, B., Yu, C., Poli, P., & Abercrombie, R. (2017). Earthquake rupture below the brittle-ductile transition in continental lithospheric mantle. Science advances, 3(3), e1602642.

Hydroacoustics

  • 2019/07/05 by Jiayuan Yao

  • Metz, D., Watts, A. B., Grevemeyer, I., & Rodgers, M. (2018). Tracking Submarine Volcanic Activity at Monowai: Constraints From Long‐Range Hydroacoustic Measurements. Journal of Geophysical Research: Solid Earth, 123(9), 7877-7895.

1960 Chilean earthquake

  • 2019/06/14 by Shengji Wei

  • Kanamori, H., Rivera, L., & Lambotte, S. (2019). Evidence for a large strike-slip component during the 1960 Chilean earthquake. Geophysical Journal International, 218(1), 1-32.

Back arc thrusting along the eastern Sunda arc

  • 2019/06/07 by Karen Lythgoe

  • McCaffrey, R., & Nábělek, J. (1984). The geometry of back arc thrusting along the eastern Sunda arc, Indonesia: Constraints from earthquake and gravity data. Journal of Geophysical Research: Solid Earth, 89(B7), 6171-6179.

Reservoir-Induced Seismicity

  • 2019/05/31 by Wardah Shafiqah Binti MOHAMMAD FADIL

  • Talwani, P., & Acree, S. (1985). Pore pressure diffusion and the mechanism of reservoir-induced seismicity. In Earthquake Prediction (pp. 947-965). Birkhäuser, Basel.

Deep earthquake

  • 2019/05/24 by Hongyu Zeng

  • Wiens, D. A. (2001). Seismological constraints on the mechanism of deep earthquakes: Temperature dependence of deep earthquake source properties. Physics of the Earth and Planetary Interiors, 127(1-4), 145-163.

Earthworm and SeiscomP3

  • 2019/05/17 by Phyo Maung Maung

  • Olivieri, M., & Clinton, J. (2012). An almost fair comparison between Earthworm and SeisComp3. Seismological Research Letters, 83(4), 720-727.

Waveform complexity

  • 2019/05/03 by Weiwen Chen

  • Sun, D., & Helmberger, D. (2011). Upper-mantle structures beneath USArray derived from waveform complexity. Geophysical Journal International, 184(1), 416-438.

Temporal change

  • 2019/04/26 by Jiayuan Yao

  • Mao, S., Campillo, M., van der Hilst, R. D., Brenguier, F., Stehly, L., & Hillers, G. (2019). High temporal resolution monitoring of small variations in crustal strain by dense seismic arrays. Geophysical Research Letters, 46(1), 128-137.

Nuclear explosions in North Korea

  • 2019/04/12 by Qibin Shi

  • Alvizuri, C., & Tape, C. (2018). Full moment tensor analysis of nuclear explosions in North Korea. Seismological Research Letters, 89(6), 2139-2151.

Large megathrust earthquake rupture

  • 2019/04/05 by Priyamvada Nanjundiah

  • Ye, L., Kanamori, H., & Lay, T. (2018). Global variations of large megathrust earthquake rupture characteristics. Science advances, 4(3), eaao4915.

Autocorrelation of Local Earthquake Coda

  • 2019/03/29 by Karen Lythgoe

  • Kim, D., Keranen, K. M., Abers, G. A., & Brown, L. D. (2019). Enhanced Resolution of the Subducting Plate Interface in Central Alaska From Autocorrelation of Local Earthquake Coda. Journal of Geophysical Research: Solid Earth, 124(2), 1583-1600.

Supershear

  • 2019/03/22 by Muzli Muzli

  • Socquet, A., Hollingsworth, J., Pathier, E., & Bouchon, M. (2019). Evidence of supershear during the 2018 magnitude 7.5 Palu earthquake from space geodesy. Nature Geoscience, 12(3), 192.

Full waveform seismic tomography

  • 2019/03/15 by Shengji Wei

  • Tao, K., Grand, S. P., & Niu, F. (2018). Seismic structure of the upper mantle beneath Eastern Asia from full waveform seismic tomography. Geochemistry, Geophysics, Geosystems, 19(8), 2732-2763.

660-kilometer boundary topography

  • 2019/03/01 by Hongyu Zeng

  • Wu, W., Ni, S., & Irving, J. C. (2019). Inferring Earth’s discontinuous chemical layering from the 660-kilometer boundary topography. Science, 363(6428), 736-740.

2016 Mw 6.7 Imphal Earthquake

  • 2019/02/22 by Wardah Shafiqah Binti MOHAMMAD FADIL

  • Parameswaran, R. M., & Rajendran, K. (2016). The 2016 M w 6.7 Imphal Earthquake in the Indo‐Burman Range: A Case of Continuing Intraplate Deformation within the Subducted Slab. Bulletin of the Seismological Society of America, 106(6), 2653-2662.

Subduction-transition zone interaction

  • 2019/02/08 by Weiwen Chen

  • Goes, S., Agrusta, R., Van Hunen, J., & Garel, F. (2017). Subduction-transition zone interaction: A review. Geosphere, 13(3), 644-664.

Bimodal seismicity

  • 2019/02/01 by Meng Chen

  • Dal Zilio, L. (2020). Bimodal seismicity in the Himalaya controlled by fault friction and geometry. In Cross-Scale Modeling of Mountain Building and the Seismic Cycle: From Alps to Himalaya (pp. 67-93). Springer, Cham.

Deep Learning

  • 2019/01/25 by Qibin Shi

  • Ross, Z. E., Yue, Y., Meier, M. A., Hauksson, E., & Heaton, T. H. (2019). PhaseLink: A deep learning approach to seismic phase association. Journal of Geophysical Research: Solid Earth, 124(1), 856-869.

Indian Subduction in the Pamir‐Hindu Kush

  • 2019/01/18 by Priyamvada Nanjundiah

  • Perry, M., Kakar, N., Ischuk, A., Metzger, S., Bendick, R., Molnar, P., & Mohadjer, S. (2019). Little Geodetic Evidence for Localized Indian Subduction in the Pamir‐Hindu Kush of Central Asia. Geophysical Research Letters, 46(1), 109-118.

2018 Fall

Slab water

  • 2018/12/07 by Hongyu Zeng

  • Cai, C., Wiens, D. A., Shen, W., & Eimer, M. (2018). Water input into the Mariana subduction zone estimated from ocean-bottom seismic data. Nature, 563(7731), 389.

  • Faccenda, M., Gerya, T. V., & Burlini, L. (2009). Deep slab hydration induced by bending-related variations in tectonic pressure. Nature Geoscience, 2(11), 790.

Hydrated normal fault

  • 2018/11/30 by Karen Lythgoe

  • Garth, T., & Rietbrock, A. (2014). Order of magnitude increase in subducted H2O due to hydrated normal faults within the Wadati-Benioff zone. Geology, 42(3), 207-210.

Virtual Earthquake

  • 2018/11/23 by Meng Chen

  • Denolle, M. A., Dunham, E. M., Prieto, G. A., & Beroza, G. C. (2014). Strong ground motion prediction using virtual earthquakes. Science, 343(6169), 399-403.

24 August 2016 Mw 6.8 Chauk, Myanmar, Earthquake

  • 2018/11/16 by Phyo Maung Maung

  • Shiddiqi, H. A., Tun, P. P., Kyaw, T. L., & Ottemöller, L. (2018). Source Study of the 24 August 2016 M w 6.8 Chauk, Myanmar, Earthquake. Seismological Research Letters, 89(5), 1773-1785.

Microblock rotations and fault coupling

  • 2018/11/10 by Muzli Muzli

  • Socquet, A., Simons, W., Vigny, C., McCaffrey, R., Subarya, C., Sarsito, D., … & Spakman, W. (2006). Microblock rotations and fault coupling in SE Asia triple junction (Sulawesi, Indonesia) from GPS and earthquake slip vector data. Journal of Geophysical Research: Solid Earth, 111(B8).

Melt distribution

  • 2018/10/26 by Dini Nurfiani

  • Hammond, J. O., & Kendall, J. M. (2016). Constraints on melt distribution from seismology: a case study in Ethiopia. Geological Society, London, Special Publications, 420(1), 127-147.

  • Chu, R., Helmberger, D. V., Sun, D., Jackson, J. M., & Zhu, L. (2010). Mushy magma beneath Yellowstone. Geophysical Research Letters, 37(1).

Receiver functions from short-term nodal seismic arrays

  • 2018/10/19 by Wardah Shafiqah Binti MOHAMMAD FADIL

  • Liu, G., Persaud, P., & Clayton, R. W. (2018). Structure of the Northern Los Angeles basins revealed in teleseismic receiver functions from short‐term nodal seismic arrays. Seismological Research Letters, 89(5), 1680-1689.

Seismic Phase Detection with Deep Learning

  • 2018/10/12 by Qibin Shi

  • Ross, Z. E., Meier, M. A., Hauksson, E., & Heaton, T. H. (2018). Generalized seismic phase detection with deep learning. Bulletin of the Seismological Society of America, 108(5A), 2894-2901.

Mantle transition zone beneath the North China Craton

  • 2018/10/05 by Weiwen Chen

  • Chen, L., & Ai, Y. (2009). Discontinuity structure of the mantle transition zone beneath the North China Craton from receiver function migration. Journal of Geophysical Research: Solid Earth, 114(B6).

A path independent integral

  • 2018/09/28 by Hongyu Zeng

  • Rice, J. R. (1968). A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of applied mechanics, 35(2), 379-386.

Nodes

  • 2018/09/21 by Xin Wang

  • Seismic source

    • Brenguier, F., Kowalski, P., Ackerley, N., Nakata, N., Boué, P., Campillo, M., … & Roux, P. (2015). Toward 4D noise-based seismic probing of volcanoes: Perspectives from a large-N experiment on Piton de la Fournaise Volcano. Seismological Research Letters, 87(1), 15-25.

    • Fan, W., & McGuire, J. J. (2018). Investigating microearthquake finite source attributes with IRIS Community Wavefield Demonstration Experiment in Oklahoma. Geophysical Journal International, 214(2), 1072-1087.

    • Farrell, J., Wu, S. M., Ward, K. M., & Lin, F. C. (2018). Persistent noise signal in the FairfieldNodal three‐component 5‐Hz geophones. Seismological Research Letters, 89(5), 1609-1617.

    • Hansen, S. M., & Schmandt, B. (2015). Automated detection and location of microseismicity at Mount St. Helens with a large‐N geophone array. Geophysical Research Letters, 42(18), 7390-7397.

    • Inbal, A., Clayton, R. W., & Ampuero, J. P. (2015). Imaging widespread seismicity at midlower crustal depths beneath Long Beach, CA, with a dense seismic array: Evidence for a depth‐dependent earthquake size distribution. Geophysical Research Letters, 42(15), 6314-6323.

    • Inbal, A., Ampuero, J. P., & Clayton, R. W. (2016). Localized seismic deformation in the upper mantle revealed by dense seismic arrays. Science, 354(6308), 88-92.

    • Li, C., Li, Z., Peng, Z., Zhang, C., Nakata, N., & Sickbert, T. (2018). Long‐period long‐duration events detected by the IRIS community wavefield demonstration experiment in Oklahoma: Tremor or train signals?. Seismological Research Letters, 89(5), 1652-1659.

    • Li, Z., Peng, Z., Hollis, D., Zhu, L., & McClellan, J. (2018). High-resolution seismic event detection using local similarity for Large-N arrays. Scientific reports, 8(1), 1646.

    • Deep afterslip following the 2016 Mw 6.4 MeiNong, Taiwan earthquake.

    • Riahi, N., & Gerstoft, P. (2015). The seismic traffic footprint: Tracking trains, aircraft, and cars seismically. Geophysical Research Letters, 42(8), 2674-2681.

    • Riahi, N., & Gerstoft, P. (2017). Using graph clustering to locate sources within a dense sensor array. Signal Processing, 132, 110-120.

    • Ringler, A. T., Anthony, R. E., Karplus, M. S., Holland, A. A., & Wilson, D. C. (2018). Laboratory tests of three Z‐land fairfield nodal 5‐Hz, three‐component sensors. Seismological Research Letters, 89(5), 1601-1608.

    • Sweet, J. R., Anderson, K. R., Bilek, S., Brudzinski, M., Chen, X., DeShon, H., … & Lin, F. C. (2018). A community experiment to record the full seismic wavefield in Oklahoma. Seismological Research Letters, 89(5), 1923-1930.

  • Seismic imgaing

    • Bowden, D. C., Tsai, V. C., & Lin, F. C. (2015). Site amplification, attenuation, and scattering from noise correlation amplitudes across a dense array in Long Beach, CA. Geophysical Research Letters, 42(5), 1360-1367.

    • Hansen, S. M., Schmandt, B., Levander, A., Kiser, E., Vidale, J. E., Abers, G. A., & Creager, K. C. (2016). Seismic evidence for a cold serpentinized mantle wedge beneath Mount St Helens. Nature communications, 7, 13242.

    • Lin, F. C., Li, D., Clayton, R. W., & Hollis, D. (2013). High-resolution 3D shallow crustal structure in Long Beach, California: Application of ambient noise tomography on a dense seismic array. Geophysics, 78(4), Q45-Q56.

    • Ward, K. M., & Lin, F. C. (2017). On the viability of using autonomous three‐component nodal geophones to calculate teleseismic Ps receiver functions with an application to Old Faithful, Yellowstone. Seismological Research Letters, 88(5), 1268-1278.

    • Liu, G., Persaud, P., & Clayton, R. W. (2018). Structure of the Northern Los Angeles basins revealed in teleseismic receiver functions from short‐term nodal seismic arrays. Seismological Research Letters, 89(5), 1680-1689.

    • Schmandt, B., & Clayton, R. W. (2013). Analysis of teleseismic P waves with a 5200‐station array in Long Beach, California: Evidence for an abrupt boundary to Inner Borderland rifting. Journal of Geophysical Research: Solid Earth, 118(10), 5320-5338.

    • Wang, W., Chen, P., Keifer, I., Dueker, K., Lee, E. J., Mu, D., … & Carr, B. (2019). Weathering front under a granite ridge revealed through full-3D seismic ambient-noise tomography. Earth and Planetary Science Letters, 509, 66-77.

    • Wang, Y., Lin, F. C., Schmandt, B., & Farrell, J. (2017). Ambient noise tomography across Mount St. Helens using a dense seismic array. Journal of Geophysical Research: Solid Earth, 122(6), 4492-4508.

    • Ward, K. M., Lin, F., & Schmandt, B. (2018). High‐Resolution Receiver Function Imaging Across the Cascadia Subduction Zone Using a Dense Nodal Array. Geophysical Research Letters, 45(22), 12-218.

    • Wu, S. M., Ward, K. M., Farrell, J., Lin, F. C., Karplus, M., & Smith, R. B. (2017). Anatomy of Old Faithful from subsurface seismic imaging of the Yellowstone Upper Geyser Basin. Geophysical Research Letters, 44(20), 10-240.

Multistencils Fast Marching Methods

  • 2018/09/14 by Yinyu Qi

  • Hassouna, M. S., & Farag, A. A. (2007). Multistencils fast marching methods: A highly accurate solution to the eikonal equation on cartesian domains. IEEE transactions on pattern analysis and machine intelligence, 29(9), 1563-1574.

High‐resolution event relocation

  • 2018/09/07 by Jiayuan Yao

  • Sun, L., Zhang, M., & Wen, L. (2016). A new method for high‐resolution event relocation and application to the aftershocks of Lushan earthquake, China. Journal of Geophysical Research: Solid Earth, 121(4), 2539-2559.

Active and recent tectonics of the Burma Platelet

  • 2018/08/17

  • Rangin, C. (2017). Active and recent tectonics of the Burma Platelet in Myanmar. Geological Society, London, Memoirs, 48(1), 53-64.