Paper Reading (EOS)¶
This website is a backup of group meeting information of EOS Observational Seismology group. Some available PPTs are in MIG Google Drive (groupmeeting.NTU/groupmeeting.EOS
) or in EOS-Seismology Microsoft Teams (Files/PaperReading
).
2021¶
Correlation of porosity variations and rheological transitions on the southern Cascadia megathrust¶
2021-07-16 by Yukuan Chen
Guo, H., McGuire, J. J., & Zhang, H. (2021). Correlation of porosity variations and rheological transitions on the southern Cascadia megathrust. Nature Geoscience, 14(5), 341–348. https://doi.org/10.1038/s41561-021-00740-1
Structure and QP–QS Relations in the Seattle and Tualatin Basins from Converted Seismic Phases¶
2021-07-09 by Win Shwee Sin Oo
Stone, I., Wirth, E. A., & Frankel, A. D. (2021). Structure and QP–QS Relations in the Seattle and Tualatin Basins from Converted Seismic Phases. Bulletin of the Seismological Society of America, 111(3), 1221–1233. https://doi.org/10.1785/0120200390
Rapid Acceleration Leads to Rapid Weakening in Earthquake-Like Laboratory Experiments¶
2021-07-02 by Hongyu Zeng
Chang, J. C., Lockner, D. A., & Reches, Z. (2012). Rapid Acceleration Leads to Rapid Weakening in Earthquake-Like Laboratory Experiments. Science, 338(6103), 101–105. https://doi.org/10.1126/science.1221195
Misconception of Waveform Similarity in the Identification of Repeating Earthquakes¶
2021-06-25 by Karen Lythgoe
Gao, D., Kao, H., & Wang, B. (2021). Misconception of Waveform Similarity in the Identification of Repeating Earthquakes. Geophysical Research Letters. Published. https://doi.org/10.1029/2021gl092815
Data-driven Accelerogram Synthesis using Deep Generative Models¶
2021-06-18 by Qibin Shi
Florez, M., Caporale, M., Buabthong, P., Ross, Z., Asimaki, D., & Meier, M. (2020). Data-driven Accelerogram Synthesis using Deep Generative Models. https://arxiv.org/abs/2011.09038
Elastic Properties of Minerals¶
2021-06-04 by Shidong
Bass, J. D., Sinogeikin, S. V., & Li, B. (2008). Elastic Properties of Minerals: A Key for Understanding the Composition and Temperature of Earth’s Interior. Elements, 4(3), 165–170. https://doi.org/10.2113/gselements.4.3.165
New Ground Motion to Intensity Conversion Equations (GMICEs) for New Zealand¶
2021-05-28 by Phyo Maung Maung
Moratalla, J. M., Goded, T., Rhoades, D. A., Canessa, S., & Gerstenberger, M. C. (2020). New Ground Motion to Intensity Conversion Equations (GMICEs) for New Zealand. Seismological Research Letters, 92(1), 448–459.
The Hindu Kush slab break-off as revealed by deep structure and crustal deformation¶
2021-05-21 by Priyamvada Nanjundiah
Kufner, S. K., Kakar, N., Bezada, M., Bloch, W., Metzger, S., Yuan, X., … & Schurr, B. (2021). The Hindu Kush slab break-off as revealed by deep structure and crustal deformation. Nature communications, 12(1), 1-11.
Subducted oceanic crust and the origin of lower-mantle heterogeneities¶
2021-05-14 by Weiwen Chen
Wang, W., Xu, Y., Sun, D., Ni, S., Wentzcovitch, R., & Wu, Z. (2020). Velocity and density characteristics of subducted oceanic crust and the origin of lower-mantle heterogeneities. Nature communications, 11(1), 1-8.
3D fault architecture controls the dynamism of earthquake swarms¶
2021-05-07 by Yukuan Chen
Ross, Z. E., Cochran, E. S., Trugman, D. T., & Smith, J. D. (2020). 3D fault architecture controls the dynamism of earthquake swarms. Science, 368(6497), 1357-1361.
Fault damage zones¶
2021-04-30 by Win Shwee Sin Oo
Kim, Y. S., Peacock, D. C., & Sanderson, D. J. (2004). Fault damage zones. Journal of Structural Geology, 26(3), 503–517. https://doi.org/10.1016/j.jsg.2003.08.002
Earthquakes, geology, tectonics and rheology¶
2021-04-16 by Shengji Wei
Jackson, J., McKenzie, D., & Priestley, K. (2021). Relations between earthquake distributions, geological history, tectonics and rheology on the continents. Philosophical Transactions of the Royal Society A, 379(2193), 20190412.
Propagation of large earthquakes as self-healing pulses or mild cracks¶
2021-04-09 by Hongyu Zeng
Lambert, V., Lapusta, N., & Perry, S. (2021). Propagation of large earthquakes as self-healing pulses or mild cracks. Nature, 591(7849), 252-258. https://doi.org/10.1038/s41586-021-03248-1
Seamount Subduction and Earthquakes¶
2021/03/19 by Qibin Shi
Watts, A., Koppers, A., & Robinson, D. (2010). Seamount Subduction and Earthquakes. Oceanography, 23(01), 166–173. https://doi.org/10.5670/oceanog.2010.68
Seismotectonics of the eastern Himalayan and indo‐burman plate boundary systems¶
2021/03/12 by Wardah Shafiqah Binti MOHAMMAD FADIL
Kumar, A., Mitra, S., & Suresh, G. (2015). Seismotectonics of the eastern Himalayan and indo-burman plate boundary systems. Tectonics, 34(11), 2279–2295. https://doi.org/10.1002/2015tc003979
Near‐Field Ground Motions and Shaking from Ridgecrest Earthquake¶
2021/03/05 by Phyo Maung Maung
Hough, S. E., Yun, S. H., Jung, J., Thompson, E., Parker, G. A., & Stephenson, O. (2020). Near‐Field Ground Motions and Shaking from the 2019 Mw 7.1 Ridgecrest, California, Mainshock: Insights from Instrumental, Macroseismic Intensity, and Remote‐Sensing Data. Bulletin of the Seismological Society of America, 110(4), 1506-1516.
Localized fault-zone dilatancy and surface inelasticity of the 2019 Ridgecrest earthquakes¶
2021/02/26 by Priyamvada Nanjundiah
Barnhart, W. D., Gold, R. D., & Hollingsworth, J. (2020). Localized fault-zone dilatancy and surface inelasticity of the 2019 Ridgecrest earthquakes. Nature Geoscience, 13(10), 699-704.
Earth’s deepest earthquake swarms track fluid ascent beneath nascent arc volcanoes¶
2021/02/19 by Karen Lythgoe
White, L. T., Rawlinson, N., Lister, G. S., Waldhauser, F., Hejrani, B., Thompson, D. A., et. al. Morgan, J. P., Earth’s deepest earthquake swarms track fluid ascent beneath nascent arc volcanoes, 2019. https://www.sciencedirect.com/science/article/pii/S0012821X19303310
Deep Learning for Picking Seismic Arrival Times¶
2021/02/05 by Yukuan Chen
Wang, J., Xiao, Z., Liu, C., Zhao, D., & Yao, Z. Deep Learning for Picking Seismic Arrival Times. Journal of Geophysical Research: Solid Earth, 2019, 124(7), 6612–6624. https://doi.org/10.1029/2019jb017536
Laboratory Earthquakes: The Sub-Rayleigh–to–Supershear Rupture Transition¶
2021/01/29 by Deepa
Xia K W, Ares J R, Hiroo K, et al. Laboratory Earthquakes: The Sub-Rayleigh–to–Supershear Rupture Transition. American Association for the Advancement of Science, 2004, 303(5665): 1859-1861. https://doi.org/10.1126/science.1094022
Basement Imaging Using Sp Converted Phases from a Dense Strong-Motion Array in Lan-Yang Plain, Taiwan¶
2021/01/22 by Win Shwe Sin Oo
Chang C H, Lin T L, Wu Y M, et al. Basement imaging using Sp converted phases from a dense strong-motion array in Lan-Yang Plain, Taiwan[J]. Bulletin of the Seismological Society of America, 2010, 100(3): 1363-1369.
Deep structure of NE China¶
2021/01/15 by Weiwen Chen
Wang, X., Chen, Q. F., Niu, F., Wei, S., Ning, J., Li, J., … & Liu, L. (2020). Distinct slab interfaces imaged within the mantle transition zone. Nature Geoscience, 13(12), 822-827.
Tang, Y., Obayashi, M., Niu, F., Grand, S. P., Chen, Y. J., Kawakatsu, H., … & Ni, J. F. (2014). Changbaishan volcanism in northeast China linked to subduction-induced mantle upwelling. Nature Geoscience, 7(6), 470-475.
Ma, J., Tian, Y., Liu, C., Zhao, D., Feng, X., & Zhu, H. (2018). P-wave tomography of Northeast Asia: Constraints on the western Pacific plate subduction and mantle dynamics. Physics of the Earth and Planetary Interiors, 274, 105-126.
Fault healing promotes high-frequency earthquakes in laboratory experiments and on natural faults¶
2021/01/08 by Hongyu Zeng
McLaskey, G., Thomas, A., Glaser, S. et al. Fault healing promotes high-frequency earthquakes in laboratory experiments and on natural faults. Nature 491, 101–104 (2012). https://doi.org/10.1038/nature11512
2020¶
Shumagin seismic gap at the Alaska subduction zone¶
2020/12/4 by Qibin Shi
Shillington D J, Bécel A, Nedimović M R, et al. Link between plate fabric, hydration and subduction zone seismicity in Alaska[J]. Nature Geoscience, 2015, 8(12): 961-964.
Continuum of earthquake rupture speeds enabled by oblique slip¶
2020/11/27 by Rishav
Weng, H. and Ampuero, J.P., 2020. Continuum of earthquake rupture speeds enabled by oblique slip. Nature Geoscience, pp.1-5.
Evolution of tectonics and geodynamics of the eastern part of the India-Asia collision in Myanmar¶
2020/11/20 by Wardah Shafiqah Binti MOHAMMAD FADIL
Licht A, Dupont-Nivet G, Win Z, et al. Paleogene evolution of the Burmese forearc basin and implications for the history of India-Asia convergence[J]. GSA Bulletin, 2019, 131(5-6): 730-748.
Seismoetctonics of Hindu-Kush and Pamir regions¶
2020/11/06 by Phyo Maung Maung
Schurr,B.,L.Ratschbacher,C.Sippl,R. Gloaguen, X. Yuan, and J. Mechie (2014), Seismotectonics of the Pamir , Tectonics, 33, 1501–1 518, doi:10.1002/2014TC003576.
Pamir‐Hindu Kush Intermediate‐depth Earthquake¶
2020/10/30 by Priyamvada Nanjundiah
Sippl, C., Schurr, B., Yuan, X., Mechie, J., Schneider, F. M., Gadoev, M., … & Minaev, V. (2013). Geometry of the Pamir‐Hindu Kush intermediate‐depth earthquake zone from local seismic data. Journal of Geophysical Research: Solid Earth, 118(4), 1438-1457.
The crust in the Pamir¶
2020/10/23 by Priyamvada Nanjundiah
Schneider, F. M., Yuan, X., Schurr, B., Mechie, J., Sippl, C., Kufner, S. K., … & Minaev, V. (2019). The crust in the Pamir: Insights from receiver functions. Journal of Geophysical Research: Solid Earth, 124(8), 9313-9331.
Serpentinites¶
2020/10/16 by Karen Lythgoe
Guillot, S., Schwartz, S., Reynard, B., Agard, P., & Prigent, C. (2015). Tectonic significance of serpentinites. Tectonophysics, 646, 1-19.
Lower-mantle anisotropy¶
2020/10/09 by Weiwen Chen
Ferreira, A. M., Faccenda, M., Sturgeon, W., Chang, S. J., & Schardong, L. (2019). Ubiquitous lower-mantle anisotropy beneath subduction zones. Nature Geoscience, 12(4), 301-306.
Solving the Eikonal Equation with Deep Neural Networks¶
2020/10/02 by Yukuan Chen
EikoNet: Solving the Eikonal equation with Deep Neural Networks. PDF
Earthquake ruptures with thermal weakening and the operation of major faults¶
2020/09/25 by Deepa
Noda, H., Dunham, E. M., & Rice, J. R. (2009). Earthquake ruptures with thermal weakening and the operation of major faults at low overall stress levels. Journal of Geophysical Research: Solid Earth, 114(B7).
Earthquake detection and phase picking by deep learning¶
2020/09/18 by Win Shwe Sin OO
Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., & Beroza, G. C. (2020). Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nature communications, 11(1), 1-12.
Physics of dynamic friction¶
2020/09/11 by Hongyu Zeng
Tal, Y., Rubino, V., Rosakis, A. J., & Lapusta, N. (2020). Illuminating the physics of dynamic friction through laboratory earthquakes on thrust faults. Proceedings of the National Academy of Sciences, 117(35), 21095-21100.
Machine learning¶
2020/09/04 by Qibin Shi
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., … & Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems (pp. 2672-2680).
Li, Z., Meier, M. A., Hauksson, E., Zhan, Z., & Andrews, J. (2018). Machine learning seismic wave discrimination: Application to earthquake early warning. Geophysical Research Letters, 45(10), 4773-4779.
Focal depth determination¶
2020/08/28 by Wardah Shafiqah Binti MOHAMMAD FADIL
Yuan, J., Kao, H., & Yu, J. (2020). Depth‐Scanning Algorithm: Accurate, Automatic, and Efficient Determination of Focal Depths for Local and Regional Earthquakes. Journal of Geophysical Research: Solid Earth, 125(7)
Machine learning in seismology¶
20202/08/21 by Phyo Maung Maung
Kong, Q., Trugman, D. T., Ross, Z. E., Bianco, M. J., Meade, B. J., & Gerstoft, P. (2019). Machine learning in seismology: Turning data into insights. Seismological Research Letters, 90(1), 3-14.
High-resolution seismic catalog¶
2020/08/14 by Priyamvada Nanjundiah
Shelly, D. R. (2020). A high‐resolution seismic catalog for the initial 2019 Ridgecrest earthquake sequence: Foreshocks, aftershocks, and faulting complexity. Seismological Research Letters.
Sequencing seismograms¶
2020/08/07 by Karen Lythgoe
Kim, D., Lekić, V., Ménard, B., Baron, D., & Taghizadeh-Popp, M. (2020). Sequencing seismograms: A panoptic view of scattering in the core-mantle boundary region. Science, 368(6496), 1223-1228.
Spectral element method¶
2020/07/24 by Shengji Wei
Komatitsch, Dimitri, and Jeroen Tromp. “Introduction to the spectral element method for three-dimensional seismic wave propagation.” Geophysical journal international 139.3 (1999): 806-822.
410‐km discontinuity¶
2020/07/17 by Weiwen Chen
Li, L., Chen, Y.‐W., Zheng, Y., Hu, H., & Wu, J. (2019). Seismic evidence for plume‐slab interaction by high‐resolution imaging of the 410‐km discontinuity under Tonga. Geophysical Research Letters, 46, 13687– 13694.
Induced seismicity¶
2020/07/03 by Deepa
Scuderi, M. M., & Collettini, C. (2016). The role of fluid pressure in induced vs. triggered seismicity: Insights from rock deformation experiments on carbonates. Scientific reports, 6(1), 1-9.
Double-difference location¶
2020/06/26 by Win Shwe Sin OO
Bouchaala, F., Vavryčuk, V., & Fischer, T. (2013). Accuracy of the master-event and double-difference locations: synthetic tests and application to seismicity in West Bohemia, Czech Republic. Journal of seismology, 17(3), 841-859.
Waveform‐based seismic location¶
2020/06/19/ by Hongyu Zeng
Li, L., Tan, J., Schwarz, B., Staněk, F., Poiata, N., Shi, P., et al. ( 2020). Recent advances and challenges of waveform‐based seismic location methods at multiple scales. Reviews of Geophysics, 58, e2019RG000667.
Fault reactivation¶
2020/06/12 by Qibin Shi
Giorgetti, C., Tesei, T., Scuderi, M. M., & Collettini, C. ( 2019). Experimental insights into fault reactivation in gouge‐filled fault zones. Journal of Geophysical Research: Solid Earth, 124, 4189– 4204.
Seismic ocean thermometry¶
2020/06/05 by Sheng Wei
Wenbo Wu’s research about temporal change of ocean temperature measured by temporal change of T-phase between repeating earthquakes
Indian continental subduction beneath Myanmar¶
2020/05/29 by Wardah FADIL
Zheng, T., He, Y., Ding, L., Jiang, M., Ai, Y., Mon, C. T., … & Thant, M. (2020). Direct structural evidence of Indian continental subduction beneath Myanmar. Nature Communications, 11(1), 1-9.
Major Active Faults in Central Myanmar¶
2020/05/22 by Phyo Maung Maung
Mon, C. T., Gong, X., Wen, Y., Jiang, M., Chen, Q.‐F., Zhang, M., et al. ( 2020). Insight into major active faults in Central Myanmar and the related geodynamic sources. Geophysical Research Letters, 47.
Aftershocks driven by afterslip and fluid pressure sweeping¶
2020/05/15 by Priyamvada Nanjundiah
Ross, Z. E., Rollins, C., Cochran, E. S., Hauksson, E., Avouac, J.‐P., and Ben‐Zion, Y. (2017), Aftershocks driven by afterslip and fluid pressure sweeping through a fault‐fracture mesh, Geophys. Res. Lett., 44, 8260–8267.
Fiber‐Optic Distributed Acoustic Sensing¶
2020/05/01 by Karen Lythgoe
Zhu, T., & Stensrud, D. J. (2019). Characterizing Thunder‐Induced Ground Motions Using Fiber‐Optic Distributed Acoustic Sensing Array. Journal of Geophysical Research: Atmospheres, 124, 12,810–12,823.
Metastable olivine wedge¶
2020/04/24 by Weiwen Chen
Shen, Z., & Zhan, Z. (2020). Metastable olivine wedge beneath the Japan Sea imaged by seismic interferometry. Geophysical Research Letters, 47(6).
Creep, compaction and the weak rheology of faults¶
2020/04/17 by Deepa
Sleep, N. H., & Blanpied, M. L. (1992). Creep, compaction and the weak rheology of major faults. Nature, 359(6397), 687-692.
Double-difference location¶
2020/04/10 by Win Shwe Sin OO
Waldhauser, F., & Ellsworth, W. L. (2000). A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California. BSSA.
Earthquake ground motion¶
2020/04/03 by Hongyu Zeng
Tsai, V. C., & Hirth, G. (2020). Elastic impact consequences for high‐frequency earthquake ground motion. Geophysical Research Letters, e2019GL086302.
Stress inversion¶
2020/03/27 by Wardah Shafiqah Binti MOHAMMAD FADIL
Michael, Andrew J. (1984). Determination of stress from slip data: Faults and Folds. JGR.
Nodes¶
2020/03/20 by Phyo Maung Maung
Dean, T., Tulett, J., & Barnwell, R. (2018). Nodal land seismic acquisition: The next generation. First Break, 36(1), 47-52.
Mars seismology¶
2020/03/13 by Shengji Wei
Giardini, Domenico, et al. (2020). The seismicity of Mars. Nature Geoscience, 1-8.
Lognonné, P., Banerdt, W. B., et al. (2020). Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nature Geoscience, 1-8.
Mantle transition zone water filter¶
2020/03/06 by Karen Lythgoe
Bercovici, D., & Karato, S. I. (2003). Whole-mantle convection and the transition-zone water filter. Nature, 425(6953), 39-44.
Yang, J., & Faccenda, M. (2020). Intraplate volcanism originating from upwelling hydrous mantle transition zone. Nature, 1-4.
Earthquake nucleation¶
2020/02/28 by Qibin Shi
Ohnaka, M. (1992). Earthquake source nucleation: a physical model for short-term precursors. Tectonophysics, 211(1-4), 149-178.
Meier, M. A., Heaton, T., & Clinton, J. (2016). Evidence for universal earthquake rupture initiation behavior. Geophysical Research Letters, 43(15), 7991-7996.
Olson, E. L., & Allen, R. M. (2005). The deterministic nature of earthquake rupture. Nature, 438(7065), 212-215.
Umeda, Y. (1990). High-amplitude seismic waves radiated from the bright spot of an earthquake. Tectonophysics, 175(1-3), 81-92.
Dieterich, J. H. (1992). Earthquake nucleation on faults with rate-and state-dependent strength. Tectonophysics, 211(1-4), 115-134.
Deep earthquake and deep mantle water recycle¶
2020/02/21 by Weiwen Chen
Li, J., Zheng, Y., Thomsen, L., Lapen, T. J., & Fang, X. (2018). Deep earthquakes in subducting slabs hosted in highly anisotropic rock fabric. Nature Geoscience, 11(9), 696-700.
Nakagawa, T., & Nakakuki, T. (2019). Dynamics in the uppermost lower mantle: insights into the deep mantle water cycle based on the numerical modeling of subducted slabs and global-scale mantle dynamics. Annual Review of Earth and Planetary Sciences, 47, 41-66.
Earthquake Nucleation¶
2020/01/03 by Hongyu Zeng
Bouchon, M., Karabulut, H., Aktar, M., Özalaybey, S., Schmittbuhl, J., & Bouin, M. P. (2011). Extended nucleation of the 1999 Mw 7.6 Izmit earthquake. science, 331(6019), 877-880.
2019¶
Low-velocity zone atop the 410¶
2019/11/29 by Weiwen Chen
Song, T. R. A., Helmberger, D. V., & Grand, S. P. (2004). Low-velocity zone atop the 410-km seismic discontinuity in the northwestern United States. Nature, 427(6974), 530.
Thermal pressurization¶
2019/11/22 by Shengji Wei
Viesca, R. C., & Garagash, D. I. (2015). Ubiquitous weakening of faults due to thermal pressurization. Nature Geoscience, 8(11), 875.
Similar scaling laws¶
2019/11/15 by Qibin Shi
Michel, S., Gualandi, A., & Avouac, J. P. (2019). Similar scaling laws for earthquakes and Cascadia slow-slip events. Nature, 574(7779), 522-526.
Earthquake localization¶
2019/11/08 by Boasby Aidan David
Heck, M., Hobiger, M., van Herwijnen, A., Schweizer, J., & Fäh, D. (2018). Localization of seismic events produced by avalanches using multiple signal classification. Geophysical Journal International, 216(1), 201-217.
Supershear earthquakes¶
2019/11/01 by Hongyu Zeng
Bouchon, M., & Karabulut, H. (2008). The aftershock signature of supershear earthquakes. science, 320(5881), 1323-1325.
Real-time discrimination of earthquake foreshocks and aftershocks¶
2019/10/25 by Wardah Shafiqah Binti MOHAMMAD FADIL
Gulia, L., & Wiemer, S. (2019). Real-time discrimination of earthquake foreshocks and aftershocks. Nature, 574(7777), 193-199.
Seismological detection of low‐velocity anomalies surrounding the mantle transition zone in Japan subduction zone¶
2019/10/18 by Weiwen Chen
Liu, Z., Park, J., and Karato, S.‐i. ( 2016), Seismological detection of low‐velocity anomalies surrounding the mantle transition zone in Japan subduction zone, Geophys. Res. Lett., 43, 2480– 2487.
Geometry of the Burmese-Andaman subducting lithosphere¶
2019/10/11 by Phyo Maung Maung
Dasgupta, S., Mukhopadhyay, M., Bhattacharya, A., & Jana, T. K. (2003). The geometry of the Burmese-Andaman subducting lithosphere. Journal of Seismology, 7(2), 155-174.
Subduction megathrust earthquakes¶
2019/10/04 by Deepa Mele Veedu
Meier, M. A., Ampuero, J. P., & Heaton, T. H. (2017). The hidden simplicity of subduction megathrust earthquakes. Science, 357(6357), 1277-1281.
Temporal change¶
2019/09/27 by Hongyu Zeng
Schaff, D. P., & Beroza, G. C. (2004). Coseismic and postseismic velocity changes measured by repeating earthquakes. Journal of Geophysical Research: Solid Earth, 109(B10).
Slip partitioning¶
2019/09/20 by Shengji Wei
Bradley, K. E., Feng, L., Hill, E. M., Natawidjaja, D. H., & Sieh, K. (2017). Implications of the diffuse deformation of the Indian Ocean lithosphere for slip partitioning of oblique plate convergence in Sumatra. Journal of Geophysical Research: Solid Earth, 122(1), 572-591.
Dense seismic array¶
2019/09/13 by Karen Lythgoe
Ben-Zion, Y., Vernon, F. L., Ozakin, Y., Zigone, D., Ross, Z. E., Meng, H., … & Barklage, M. (2015). Basic data features and results from a spatially dense seismic array on the San Jacinto fault zone. Geophysical Journal International, 202(1), 370-380.
Tremor¶
2019/09/06 by Wardah Shafiqah Binti MOHAMMAD FADIL
Shelly, D. R. (2010). Migrating tremors illuminate complex deformation beneath the seismogenic San Andreas fault. Nature, 463(7281), 648.
Precursory changes in seismic velocity¶
2019/08/30 by Deepa Mele Veedu
Scuderi, M. M., Marone, C., Tinti, E., Di Stefano, G., & Collettini, C. (2016). Precursory changes in seismic velocity for the spectrum of earthquake failure modes. Nature geoscience, 9(9), 695.
Seismic nucleation phase¶
2019/08/23 by Qibin Shi
Beroza, G. C., & Ellsworth, W. L. (1996). Properties of the seismic nucleation phase. Tectonophysics, 261(1-3), 209-227.
Sumatran fault in Aceh¶
2019/08/16
Seismicity
Hurukawa, N., Wulandari, B. R., & Kasahara, M. (2014). Earthquake history of the Sumatran fault, Indonesia, since 1892, derived from relocation of large earthquakes. Bulletin of the Seismological Society of America, 104(4), 1750-1762.
GPS
Ito, T., E. Gunawan, F. Kimata, T. Tabei, M. Simons, I. Meilano, Agustan, Y. Ohta, I. Nurdin, and D. Sugiyanto (2012), Isolating along-strike variations in the depth extent of shallow creep and fault locking on the northern Great Sumatran Fault, J. Geophys. Res., 117, B06409.
InSAR
Tong, X., Sandwell, D. T., & Schmidt, D. A. (2018). Surface creep rate and moment accumulation rate along the Aceh seg- ment of the Sumatran fault from L-band ALOS-1/PALSAR-1 observations. Geophysical Research Letters, 45, 3404–3412.
Magnetotelluric resistivity
Becken, M., Ritter, O., Bedrosian, P. A., & Weckmann, U. (2011). Correlation between deep fluids, tremor and creep along the central San Andreas fault. Nature, 480(7375), 87.
Repeating earthquake
Nadeau, R. M., & McEvilly, T. V. (1999). Fault slip rates at depth from recurrence intervals of repeating microearthquakes. Science, 285(5428), 718-721.
Fault damaged zone
Li, Y. G., Vidale, J. E., & Cochran, E. S. (2004). Low‐velocity damaged structure of the San Andreas Fault at Parkfield from fault zone trapped waves. Geophysical Research Letters, 31(12).
Slip coulping
Noda, H., & Lapusta, N. (2013). Stable creeping fault segments can become destructive as a result of dynamic weakening. Nature, 493(7433), 518.
Deep creep along the San Jacinto fault¶
2019/08/05
Wdowinski, S. (2009). Deep creep as a cause for the excess seismicity along the San Jacinto fault. Nature Geoscience, 2(12), 882.
Slip Pulse¶
2019/07/26 by Priyamvada Nanjundiah
Melgar, D., & Hayes, G. P. (2017). Systematic observations of the slip pulse properties of large earthquake ruptures. Geophysical Research Letters, 44(19), 9691-9698.
Lateral velocity variation in the deep Earth¶
2019/07/19 by Weiwen Chen
Sun, D., Helmberger, D., Ni, S., & Bower, D. (2009). Direct measures of lateral velocity variation in the deep Earth. Journal of Geophysical Research: Solid Earth, 114(B5).
Earthquake rupture below the brittle-ductile transition¶
2019/07/12 by Shengji Wei
Prieto, G. A., Froment, B., Yu, C., Poli, P., & Abercrombie, R. (2017). Earthquake rupture below the brittle-ductile transition in continental lithospheric mantle. Science advances, 3(3), e1602642.
Hydroacoustics¶
2019/07/05 by Jiayuan Yao
Metz, D., Watts, A. B., Grevemeyer, I., & Rodgers, M. (2018). Tracking Submarine Volcanic Activity at Monowai: Constraints From Long‐Range Hydroacoustic Measurements. Journal of Geophysical Research: Solid Earth, 123(9), 7877-7895.
1960 Chilean earthquake¶
2019/06/14 by Shengji Wei
Kanamori, H., Rivera, L., & Lambotte, S. (2019). Evidence for a large strike-slip component during the 1960 Chilean earthquake. Geophysical Journal International, 218(1), 1-32.
Back arc thrusting along the eastern Sunda arc¶
2019/06/07 by Karen Lythgoe
McCaffrey, R., & Nábělek, J. (1984). The geometry of back arc thrusting along the eastern Sunda arc, Indonesia: Constraints from earthquake and gravity data. Journal of Geophysical Research: Solid Earth, 89(B7), 6171-6179.
Reservoir-Induced Seismicity¶
2019/05/31 by Wardah Shafiqah Binti MOHAMMAD FADIL
Talwani, P., & Acree, S. (1985). Pore pressure diffusion and the mechanism of reservoir-induced seismicity. In Earthquake Prediction (pp. 947-965). Birkhäuser, Basel.
Deep earthquake¶
2019/05/24 by Hongyu Zeng
Wiens, D. A. (2001). Seismological constraints on the mechanism of deep earthquakes: Temperature dependence of deep earthquake source properties. Physics of the Earth and Planetary Interiors, 127(1-4), 145-163.
Earthworm and SeiscomP3¶
2019/05/17 by Phyo Maung Maung
Olivieri, M., & Clinton, J. (2012). An almost fair comparison between Earthworm and SeisComp3. Seismological Research Letters, 83(4), 720-727.
Waveform complexity¶
2019/05/03 by Weiwen Chen
Sun, D., & Helmberger, D. (2011). Upper-mantle structures beneath USArray derived from waveform complexity. Geophysical Journal International, 184(1), 416-438.
Temporal change¶
2019/04/26 by Jiayuan Yao
Mao, S., Campillo, M., van der Hilst, R. D., Brenguier, F., Stehly, L., & Hillers, G. (2019). High temporal resolution monitoring of small variations in crustal strain by dense seismic arrays. Geophysical Research Letters, 46(1), 128-137.
Nuclear explosions in North Korea¶
2019/04/12 by Qibin Shi
Alvizuri, C., & Tape, C. (2018). Full moment tensor analysis of nuclear explosions in North Korea. Seismological Research Letters, 89(6), 2139-2151.
Large megathrust earthquake rupture¶
2019/04/05 by Priyamvada Nanjundiah
Ye, L., Kanamori, H., & Lay, T. (2018). Global variations of large megathrust earthquake rupture characteristics. Science advances, 4(3), eaao4915.
Autocorrelation of Local Earthquake Coda¶
2019/03/29 by Karen Lythgoe
Kim, D., Keranen, K. M., Abers, G. A., & Brown, L. D. (2019). Enhanced Resolution of the Subducting Plate Interface in Central Alaska From Autocorrelation of Local Earthquake Coda. Journal of Geophysical Research: Solid Earth, 124(2), 1583-1600.
Supershear¶
2019/03/22 by Muzli Muzli
Socquet, A., Hollingsworth, J., Pathier, E., & Bouchon, M. (2019). Evidence of supershear during the 2018 magnitude 7.5 Palu earthquake from space geodesy. Nature Geoscience, 12(3), 192.
Full waveform seismic tomography¶
2019/03/15 by Shengji Wei
Tao, K., Grand, S. P., & Niu, F. (2018). Seismic structure of the upper mantle beneath Eastern Asia from full waveform seismic tomography. Geochemistry, Geophysics, Geosystems, 19(8), 2732-2763.
660-kilometer boundary topography¶
2019/03/01 by Hongyu Zeng
Wu, W., Ni, S., & Irving, J. C. (2019). Inferring Earth’s discontinuous chemical layering from the 660-kilometer boundary topography. Science, 363(6428), 736-740.
2016 Mw 6.7 Imphal Earthquake¶
2019/02/22 by Wardah Shafiqah Binti MOHAMMAD FADIL
Parameswaran, R. M., & Rajendran, K. (2016). The 2016 M w 6.7 Imphal Earthquake in the Indo‐Burman Range: A Case of Continuing Intraplate Deformation within the Subducted Slab. Bulletin of the Seismological Society of America, 106(6), 2653-2662.
Subduction-transition zone interaction¶
2019/02/08 by Weiwen Chen
Goes, S., Agrusta, R., Van Hunen, J., & Garel, F. (2017). Subduction-transition zone interaction: A review. Geosphere, 13(3), 644-664.
Bimodal seismicity¶
2019/02/01 by Meng Chen
Dal Zilio, L. (2020). Bimodal seismicity in the Himalaya controlled by fault friction and geometry. In Cross-Scale Modeling of Mountain Building and the Seismic Cycle: From Alps to Himalaya (pp. 67-93). Springer, Cham.
Deep Learning¶
2019/01/25 by Qibin Shi
Ross, Z. E., Yue, Y., Meier, M. A., Hauksson, E., & Heaton, T. H. (2019). PhaseLink: A deep learning approach to seismic phase association. Journal of Geophysical Research: Solid Earth, 124(1), 856-869.
Indian Subduction in the Pamir‐Hindu Kush¶
2019/01/18 by Priyamvada Nanjundiah
Perry, M., Kakar, N., Ischuk, A., Metzger, S., Bendick, R., Molnar, P., & Mohadjer, S. (2019). Little Geodetic Evidence for Localized Indian Subduction in the Pamir‐Hindu Kush of Central Asia. Geophysical Research Letters, 46(1), 109-118.
2018 Fall¶
Slab water¶
2018/12/07 by Hongyu Zeng
Cai, C., Wiens, D. A., Shen, W., & Eimer, M. (2018). Water input into the Mariana subduction zone estimated from ocean-bottom seismic data. Nature, 563(7731), 389.
Faccenda, M., Gerya, T. V., & Burlini, L. (2009). Deep slab hydration induced by bending-related variations in tectonic pressure. Nature Geoscience, 2(11), 790.
Hydrated normal fault¶
2018/11/30 by Karen Lythgoe
Garth, T., & Rietbrock, A. (2014). Order of magnitude increase in subducted H2O due to hydrated normal faults within the Wadati-Benioff zone. Geology, 42(3), 207-210.
Virtual Earthquake¶
2018/11/23 by Meng Chen
Denolle, M. A., Dunham, E. M., Prieto, G. A., & Beroza, G. C. (2014). Strong ground motion prediction using virtual earthquakes. Science, 343(6169), 399-403.
24 August 2016 Mw 6.8 Chauk, Myanmar, Earthquake¶
2018/11/16 by Phyo Maung Maung
Shiddiqi, H. A., Tun, P. P., Kyaw, T. L., & Ottemöller, L. (2018). Source Study of the 24 August 2016 M w 6.8 Chauk, Myanmar, Earthquake. Seismological Research Letters, 89(5), 1773-1785.
Microblock rotations and fault coupling¶
2018/11/10 by Muzli Muzli
Socquet, A., Simons, W., Vigny, C., McCaffrey, R., Subarya, C., Sarsito, D., … & Spakman, W. (2006). Microblock rotations and fault coupling in SE Asia triple junction (Sulawesi, Indonesia) from GPS and earthquake slip vector data. Journal of Geophysical Research: Solid Earth, 111(B8).
Melt distribution¶
2018/10/26 by Dini Nurfiani
Hammond, J. O., & Kendall, J. M. (2016). Constraints on melt distribution from seismology: a case study in Ethiopia. Geological Society, London, Special Publications, 420(1), 127-147.
Chu, R., Helmberger, D. V., Sun, D., Jackson, J. M., & Zhu, L. (2010). Mushy magma beneath Yellowstone. Geophysical Research Letters, 37(1).
Receiver functions from short-term nodal seismic arrays¶
2018/10/19 by Wardah Shafiqah Binti MOHAMMAD FADIL
Liu, G., Persaud, P., & Clayton, R. W. (2018). Structure of the Northern Los Angeles basins revealed in teleseismic receiver functions from short‐term nodal seismic arrays. Seismological Research Letters, 89(5), 1680-1689.
Seismic Phase Detection with Deep Learning¶
2018/10/12 by Qibin Shi
Ross, Z. E., Meier, M. A., Hauksson, E., & Heaton, T. H. (2018). Generalized seismic phase detection with deep learning. Bulletin of the Seismological Society of America, 108(5A), 2894-2901.
Mantle transition zone beneath the North China Craton¶
2018/10/05 by Weiwen Chen
Chen, L., & Ai, Y. (2009). Discontinuity structure of the mantle transition zone beneath the North China Craton from receiver function migration. Journal of Geophysical Research: Solid Earth, 114(B6).
A path independent integral¶
2018/09/28 by Hongyu Zeng
Rice, J. R. (1968). A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of applied mechanics, 35(2), 379-386.
Nodes¶
2018/09/21 by Xin Wang
Seismic source
Brenguier, F., Kowalski, P., Ackerley, N., Nakata, N., Boué, P., Campillo, M., … & Roux, P. (2015). Toward 4D noise-based seismic probing of volcanoes: Perspectives from a large-N experiment on Piton de la Fournaise Volcano. Seismological Research Letters, 87(1), 15-25.
Fan, W., & McGuire, J. J. (2018). Investigating microearthquake finite source attributes with IRIS Community Wavefield Demonstration Experiment in Oklahoma. Geophysical Journal International, 214(2), 1072-1087.
Farrell, J., Wu, S. M., Ward, K. M., & Lin, F. C. (2018). Persistent noise signal in the FairfieldNodal three‐component 5‐Hz geophones. Seismological Research Letters, 89(5), 1609-1617.
Hansen, S. M., & Schmandt, B. (2015). Automated detection and location of microseismicity at Mount St. Helens with a large‐N geophone array. Geophysical Research Letters, 42(18), 7390-7397.
Inbal, A., Clayton, R. W., & Ampuero, J. P. (2015). Imaging widespread seismicity at midlower crustal depths beneath Long Beach, CA, with a dense seismic array: Evidence for a depth‐dependent earthquake size distribution. Geophysical Research Letters, 42(15), 6314-6323.
Inbal, A., Ampuero, J. P., & Clayton, R. W. (2016). Localized seismic deformation in the upper mantle revealed by dense seismic arrays. Science, 354(6308), 88-92.
Li, C., Li, Z., Peng, Z., Zhang, C., Nakata, N., & Sickbert, T. (2018). Long‐period long‐duration events detected by the IRIS community wavefield demonstration experiment in Oklahoma: Tremor or train signals?. Seismological Research Letters, 89(5), 1652-1659.
Li, Z., Peng, Z., Hollis, D., Zhu, L., & McClellan, J. (2018). High-resolution seismic event detection using local similarity for Large-N arrays. Scientific reports, 8(1), 1646.
Deep afterslip following the 2016 Mw 6.4 MeiNong, Taiwan earthquake.
Riahi, N., & Gerstoft, P. (2015). The seismic traffic footprint: Tracking trains, aircraft, and cars seismically. Geophysical Research Letters, 42(8), 2674-2681.
Riahi, N., & Gerstoft, P. (2017). Using graph clustering to locate sources within a dense sensor array. Signal Processing, 132, 110-120.
Ringler, A. T., Anthony, R. E., Karplus, M. S., Holland, A. A., & Wilson, D. C. (2018). Laboratory tests of three Z‐land fairfield nodal 5‐Hz, three‐component sensors. Seismological Research Letters, 89(5), 1601-1608.
Sweet, J. R., Anderson, K. R., Bilek, S., Brudzinski, M., Chen, X., DeShon, H., … & Lin, F. C. (2018). A community experiment to record the full seismic wavefield in Oklahoma. Seismological Research Letters, 89(5), 1923-1930.
Seismic imgaing
Bowden, D. C., Tsai, V. C., & Lin, F. C. (2015). Site amplification, attenuation, and scattering from noise correlation amplitudes across a dense array in Long Beach, CA. Geophysical Research Letters, 42(5), 1360-1367.
Hansen, S. M., Schmandt, B., Levander, A., Kiser, E., Vidale, J. E., Abers, G. A., & Creager, K. C. (2016). Seismic evidence for a cold serpentinized mantle wedge beneath Mount St Helens. Nature communications, 7, 13242.
Lin, F. C., Li, D., Clayton, R. W., & Hollis, D. (2013). High-resolution 3D shallow crustal structure in Long Beach, California: Application of ambient noise tomography on a dense seismic array. Geophysics, 78(4), Q45-Q56.
Ward, K. M., & Lin, F. C. (2017). On the viability of using autonomous three‐component nodal geophones to calculate teleseismic Ps receiver functions with an application to Old Faithful, Yellowstone. Seismological Research Letters, 88(5), 1268-1278.
Liu, G., Persaud, P., & Clayton, R. W. (2018). Structure of the Northern Los Angeles basins revealed in teleseismic receiver functions from short‐term nodal seismic arrays. Seismological Research Letters, 89(5), 1680-1689.
Schmandt, B., & Clayton, R. W. (2013). Analysis of teleseismic P waves with a 5200‐station array in Long Beach, California: Evidence for an abrupt boundary to Inner Borderland rifting. Journal of Geophysical Research: Solid Earth, 118(10), 5320-5338.
Wang, W., Chen, P., Keifer, I., Dueker, K., Lee, E. J., Mu, D., … & Carr, B. (2019). Weathering front under a granite ridge revealed through full-3D seismic ambient-noise tomography. Earth and Planetary Science Letters, 509, 66-77.
Wang, Y., Lin, F. C., Schmandt, B., & Farrell, J. (2017). Ambient noise tomography across Mount St. Helens using a dense seismic array. Journal of Geophysical Research: Solid Earth, 122(6), 4492-4508.
Ward, K. M., Lin, F., & Schmandt, B. (2018). High‐Resolution Receiver Function Imaging Across the Cascadia Subduction Zone Using a Dense Nodal Array. Geophysical Research Letters, 45(22), 12-218.
Wu, S. M., Ward, K. M., Farrell, J., Lin, F. C., Karplus, M., & Smith, R. B. (2017). Anatomy of Old Faithful from subsurface seismic imaging of the Yellowstone Upper Geyser Basin. Geophysical Research Letters, 44(20), 10-240.
Multistencils Fast Marching Methods¶
2018/09/14 by Yinyu Qi
Hassouna, M. S., & Farag, A. A. (2007). Multistencils fast marching methods: A highly accurate solution to the eikonal equation on cartesian domains. IEEE transactions on pattern analysis and machine intelligence, 29(9), 1563-1574.
High‐resolution event relocation¶
2018/09/07 by Jiayuan Yao
Sun, L., Zhang, M., & Wen, L. (2016). A new method for high‐resolution event relocation and application to the aftershocks of Lushan earthquake, China. Journal of Geophysical Research: Solid Earth, 121(4), 2539-2559.
Active and recent tectonics of the Burma Platelet¶
2018/08/17
Rangin, C. (2017). Active and recent tectonics of the Burma Platelet in Myanmar. Geological Society, London, Memoirs, 48(1), 53-64.